Standard Test Methods for Chemical Analysis of Caustic Soda and Caustic Potash (Sodium Hydroxide and Potassium Hydroxide)¹

This standard is issued under the fixed designation E291; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope*

- 1.1 These test methods cover only the analyses usually required on the following commercial products:
- 1.1.1 Caustic soda (sodium hydroxide), 50 and 73 % liquors; anhydrous (solid, flake, ground, or powdered), and
- 1.1.2 Caustic potash (potassium hydroxide), 45 % liquor; anhydrous (solid, flake, ground, or powdered).
 - 1.2 The analytical procedures appear in the following order:

Alkalinity (Total), Titrimetric (for 50 to 100 % NaOH and 45 to 100 % KOH)	8 to 14
Carbonate, Gas-Volumetric (0.001 g CO ₂ , min)	15 to 24
Carbonate, Gravimetric (0.001 g CO ₂ , min)	25 to 33
Chloride, Titrimetric, (0.001 g Cl ⁻ , min)	34 to 40
Chloride, Potentiometric Titration (0.3 to 1.2 %)	41 to 47
Chloride, Ion Selective Electrode (0.6 to 120 µg/g)	48 to 55
Iron, Photometric (0.005 mg Fe, min)	56 to 64
Sulfate, Gravimetric, (0.002 g SO ₃ , min)	65 to 71
Keywords	72

- 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard with the exception of inch-pound units for apparatus descriptions.
- 1.4 Review the current Material Safety Data Sheet (MSDS) for detailed information concerning toxicity, first-aid procedures, handling, and safety precautions.
- 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applica-

bility of regulatory limitations prior to use. Specific hazard statements are given in Section 6.

2. Referenced Documents

2.1 ASTM Standards:²

D1193 Specification for Reagent Water

E60 Practice for Analysis of Metals, Ores, and Related Materials by Spectrophotometry

E180 Practice for Determining the Precision of ASTM Methods for Analysis and Testing of Industrial and Specialty Chemicals (Withdrawn 2009)³

E200 Practice for Preparation, Standardization, and Storage of Standard and Reagent Solutions for Chemical Analysis

3. Significance and Use

3.1 Caustic soda and caustic potash are used in a large number of manufacturing processes. The chemicals are available in several grades depending on their intended use. The test methods listed in 1.2 provide procedures for analyzing caustic soda and caustic potash to determine if they are suitable for their intended use.

4. Apparatus

4.1 *Photometers and Photometric Practice*—Photometers and photometric practice used in these test methods shall conform to Practice E60.

5. Reagents

5.1 Purity of Reagents—Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of

¹ These test methods are under the jurisdiction of ASTM Committee E15 on Industrial and Specialty Chemicals and are the direct responsibility of Subcommittee E15.01 on General Standards.

Current edition approved April 1, 2009. Published April 2009. Originally approved in 1965. Last previous edition approved in 2004 as E291 – 04. DOI: 10.1520/E0291-09.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ The last approved version of this historical standard is referenced on www.astm.org.

the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available.⁴ Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

5.2 *Purity of Water*—Unless otherwise indicated, references to water shall be understood to mean Type II or Type III reagent water conforming to Specification D1193.

6. Hazards

- 6.1 Sodium and potassium hydroxides are caustic alkalies which, in their anhydrous or strong solution form, are hazard-ous materials. In contact with the skin they produce burns which may be quite serious unless promptly treated. Their action is insidious since they produce no immediate stinging or burning sensation and damage may result before their presence is realized.
- 6.2 Eyes are particularly vulnerable to severe damage from these alkalies.
- 6.3 Laboratory workers handling these alkalies should use safety goggles or face shields and rubber gloves and avoid spillage on clothing. These materials rapidly attack wool and leather.
- 6.4 Spilled caustic should be flushed away with water where possible, or covered with absorbent material (such as sawdust, vermiculite, or baking soda) and swept up and discarded in accordance with all applicable federal, state, and local health and environmental regulations. Last traces may be neutralized with dilute acetic acid and the area washed with water.
- 6.5 Perchloric acid is toxic, corrosive, and a strong oxidizer. Laboratory workers handling this acid should use safety goggles or face shields and rubber gloves.

7. Sampling

7.1 General—The nature of the caustic alkalies is such as to require special care at all points of sampling and preparation for analysis. The following information is included in order that representative samples may be ensured. Additional precautions may be necessary if trace constituents, not covered in these test methods, are to be determined. Instructions for such procedures may be obtained from the publications of most major producers. Sampling techniques must be such as to limit or prevent atmospheric exposure since sodium and potassium hydroxides, both as aqueous solutions and as anhydrous products, rapidly absorb moisture and carbon dioxide (and other acid gases) from the atmosphere. The aqueous solutions are corrosive and sampling devices and sample containers must be selected to avoid contamination with any constituent later to be determined. Strong aqueous solutions of these alkalies are available commercially under the names liquid caustic soda and liquid caustic potash. Liquid caustic potash at a concentration of 45 % remains liquid at temperatures down to -29° C, and freezing or crystallization will only be encountered under severe cold weather. Caustic soda liquors are usually shipped in insulated tank cars at elevated temperatures, and minimum temperatures must be maintained if unloading and sampling problems are to be avoided. Viscosity increases near the freezing point and creates pumping problems. Even partial freezing changes the composition of the remaining liquor and causes sampling and analysis problems. Be sure contents are completely liquid and well mixed before sampling. The following minimum temperatures should be maintained for proper sampling of bulk shipments:

50 % NaOH liquor	20°C
53 % NaOH liquor	30°C
70 to 73 % NaOH liquor	71°C

7.2 Sample Containers—The choice of container construction material is important for caustic liquor samples, especially for those to be taken or held at elevated temperatures. Glass can be used except where silica is to be determined. Polyethylene or polypropylene containers which have hightemperature properties may also be used. Nickel is the best practical metal for a metallic sample container for caustic liquors. For the analysis of 73 % caustic soda, the entire sample should be in the liquid state before removing any portion, and such portions must then be used in their entirety to avoid the factor of segregation on freezing. Caustic soda of 73 % concentration may also be "cast" into glass or plastic bottles or tubes, or nickel or silver metallic molds. The molds are later removed and the samples chipped or crushed for analysis. If this is done, the factors of segregation on freezing and atmospheric exposure while crushing must be borne in mind.

7.3 Sampling Devices and Techniques:

7.3.1 Liquid Caustic—Simple "dipper" or "tap" samples from large quantity shipments or tanks of caustic liquor are inadequate for purchaser and vendor purposes. Numerous specially designed devices are available to procure samples from various levels in tanks. A useful type of such samplers for small tanks has three or five containers mounted on a single rod so that when the device is lowered into a tank and the stoppers are pulled, samples are simultaneously taken at the different levels. These are then combined to provide a representative average sample. Shipments should be sampled at least at the upper, middle, and lower thirds. Samples should never be taken at the surface of the liquid. If it is not necessary to analyze the liquor before unloading, sampling may be accomplished by a "continuous drip" from a small tap-off with the regulating valve in a vertical section of the unloading line. The "drip" is so timed as to collect the desired amount of sample uniformly during the time of unloading.

7.3.2 Anhydrous Products:

- 7.3.2.1 Commercial anhydrous caustic soda or caustic potash is packaged in drums in solid, flake, ground, or powdered forms. Sampling and handling of these materials must be done with minimum atmospheric exposure.
- 7.3.2.2 In the case of flake, ground, or powdered sodium or potassium hydroxides, the top 75 or 100 mm of material in a drum should first be removed and a sample then taken from the

⁴ Reagent Chemicals, American Chemical Society Specifications , American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see Analar Standards for Laboratory Chemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeia and National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville, MD.

center part of the drum. The sample should be placed immediately in a suitable wide-mouth container then closed and sealed with taps or wax.

7.3.2.3 Solid caustic shall be packaged by filling metal drums with molten anhydrous product and allowing drums and contents to cool before sealing air tight. On cooling and solidifying, impurities present in the caustic tend to segregate and concentrate in the bottom section. To sample such material properly, the metal drum must be opened at the vertical seam and removed. The solid cake may then be sampled either by drilling at representative levels with a 19-mm auger bit (may cause metal contamination) or by splitting the cake in half vertically with hammer and chisel and chiseling off representative small fragments so that the total sample represents a vertical cross section through the cake. In either case, the sample shall be promptly bottled and sealed in a wide-mouth container. In the laboratory, the lumps shall be reduced to convenient size by enclosing in several thicknesses of clean cloth or kraft paper and pounding with a hammer. The crushed material shall be bottled and thoroughly mixed before analysis.

TOTAL ALKALINITY

8. Scope

8.1 This test method covers the determination of the total alkalinity of 50 and 73 % liquid caustic soda, 45 % liquid caustic potash, and anhydrous caustic soda and caustic potash.

9. Summary of Test Method

9.1 Total alkalinity is determined by titration with standard hydrochloric acid solution using methyl orange indicator solution or modified methyl orange indicator solution.

10. Reagents

- 10.1 Hydrochloric (or Sulfuric Acid), Special (1.0 meq/mL)—Prepare in accordance with Practice E200.
 - 10.2 Methyl Orange Indicator Solution—See Practice E200.
- 10.3 Modified Methyl Orange Indicator Solution—See Practice E200.
- 10.4 Water, Distilled, carbon dioxide-free (freshly boiled and cooled).

11. Procedure

- 11.1 Transfer to a tared, covered weighing bottle a sample of such size as determined from Table 1.
- 11.2 Weigh the sample to the nearest 1 mg and transfer it to a 1-L volumetric flask using several rinses of water to remove all traces of caustic from the weighing bottle. Dilute the

TABLE 1 Sample Size for Total Alkalinity

Sample	Sample Size, g
50 % NaOH	65 to 78
73 % NaOH	45 to 52
Anhydrous NaOH	32 to 40
45 % KOH	100 to 120
Anhydrous KOH	48 to 60

solution to about 400 mL with water and cool to room temperature. After cooling, dilute to 1 L and mix thoroughly.

11.3 With a volumetric pipet, transfer 50 mL (see Note 1) of the prepared solution to a 500-mL Erlenmeyer flask and add 2 to 4 drops of modified methyl orange indicator solution (see Note 2). Titrate this solution with standard 1.0 meq/mL acid to a gray end point (see Note 3) and record the volume and temperature of acid used. Correct the acid meq/mL for any difference from the standardization temperature by use of the factor $\Delta N/^{\circ}C = 0.00035$ between 20 and 30°C adding the correction when temperature of use is below (subtracting when above) the temperature of standardization. (See Practice E200.)

 $\mbox{Note 1}\mbox{--}\mbox{If a 100-mL}$ buret is to be used for this titration use a 100-mL aliquot.

Note 2—If desired, methyl orange indicator solution may be used.

Note 3—The analyst should attempt to end the titration at the same shade of color as was used for the end point in the standardization of the acid

12. Calculation

12.1 Calculate the total alkalinity as % sodium oxide or potassium oxide as follows:

Sodium oxide, % mass =
$$\frac{A \times B \times 0.030990}{W} \times 100$$
 (1)

Potassium oxide, % mass =
$$\frac{A \times B \times 0.047102}{W} \times 100$$
 (2)

where:

A = acid required for titration of the sample, mL

B = corrected meg/mL of the acid, and

W = mass of sample in the aliquot, g.

12.2 Calculate the total alkalinity as the respective hydroxide as follows:

Sodium hydroxide,
$$\%$$
 mass = $1.2907 \times \%$ mass Na₂O (3)

Potassium hydroxide,
$$\%$$
 mass = 1.1912 × $\%$ mass K₂O (4)

12.3 If actual hydroxide content is desired, the carbonate content must be determined separately as described in Sections 15 - 24 or Sections 25 - 33. Then:

Sodium hydroxide (actual),
$$\%$$
 mass = $A - (B \times 0.755)$ (5)

Potassium hydroxide (actual), % mass =
$$C - (D \times 0.812)$$
 (6)

where:

A = % mass NaOH (total alkali),

 $B = \% \text{ mass Na}_2\text{CO}_3$

C = % mass KOH (total alkali), and

 $D = \% \text{ mass } K_2CO_3.$

13. Report

13.1 Report the % mass of sodium oxide or potassium oxide to the nearest 0.01 %.

TABLE 2 Sample Size for Carbonate Analysis

Percent Na ₂ CO ₃ or Percent K ₂ CO ₃ Expected	Sample Size, g
0.01 to 0.10	8 to 10
0.10 to 0.50	5 to 7
0.50 to 1.00	2 to 4